Tag Archives: BLISS

In June 2023, astronomers and statisticans flocked to “Happy Valley’” Pennsylvania for the eighth installment of the Statistical Challenges in Modern Astronomy, a bidecadal conference. The meeting, hosted at Penn State University, marked a transition in leadership from founding members Eric Feigelson and Jogesh Babu to Hyungsuk Tak, who led the proceedings. While the astronomical applications varied widely, including modeling stars, galaxies, supernovae, X-ray observations, and gravitational waves, the methods displayed a strong Bayesian bent. Simulation based inference (SBI), which uses synthetic models to learn an approximate function for the likelihood of physical parameters given data, featured prominently in the distribution of talk topics. This article features work presented in two back-to-back talks on a probabilistic method for modeling (point) sources of light in astronomical images, for example stars or galaxies, delivered by Prof. Jeffrey Regier and Ismael Mendoza from the University of Michigan-Ann Arbor.

Read more