# Monthly Archives: October 2022

## How Statistics Can Save Lives in a Pandemic

In responding to a pandemic, time is of the essence. As the COVID-19 pandemic has raged on, it has become evident that complex decisions must be made as quickly as possible, and quality data and statistics are necessary to drive the solutions that can prevent mass illness and death. Therefore, it is essential to outline a robust and generalizable statistical process that can not only help to diminish the current COVID-19 pandemic but also assist in the prevention of potential future pandemics.

## Determining the best way to route drivers for ridesharing via reinforcement learning

Companies often want to test the impact of one design decision over another, for example Google might want to compare the current ranking of search results (version A) with an alternative ranking (version B) and evaluate how the modification would affect users’ decisions and click behavior. An experiment to determine this impact on users is known as an A/B test, and many methods have been designed to measure the ‘treatment’ effect of the proposed change.  However, these classical methods typically assume that changing one person’s treatment will not affect others (known as the Stable Unit Treatment Value Assumption or SUTVA). In the Google example, this is typically a valid assumption—showing one user different search results shouldn’t impact another user’s click behavior. But in some situations, SUTVA is violated, and new methods must be introduced to properly measure the effect of design changes.

## E-values in statistics: apt additions or instruments of generational revolt?

It was never meant to last, you know. Statistical measures have their heydays; permanent relevance is no guarantee. The p-value was – and still is – a tool like no other. Through the years it has been caressed and condemned, worshipped and feared, praised and slandered – all the while standing at the crossroads of almost every hypothesis testing, modeling, and prediction. Operationally, a p-value is convenient: we reject, almost mechanically, our null assumption if this value falls below certain discipline-specific thresholds like 0.01, 0.05, etc. Still, its cumbersome construction, triggering its tricky interpretation and stunning misuses, frequently lands it on the wrong side of both practitioners and stats purists. Bodies such as the American Statistical Association routinely issue caution around its use (https://doi.org/10.1080/00031305.2016.1154108). Experts have been hearing its death rattle for quite a while. The article “E-values: calibration, combination, and applications” by V. Volk and R. Wang could be the final twist of the knife. Here, the authors offer a promising alternative – the e-value – which can coexist with – and, at times, replace – its troubled ancestor.

3/3