Author Archives: Moinak Bhaduri

The setting repeats depressingly often. A hurricane inching towards the Florida coast. Weather scientists glued to tracking monitors, hunched over simulation printouts, trying to remove people out of harm’s way. Urgent to them is the need to mark a patch of the shore where the hurricane is likely to hit. Those living in this patch need to be relocated. These scientists, and many before them – it’s hard to say since when – realized what’s at issue here is not quite so much the precise location the storm is going to hit – precise to the exact grain of sand, but a stretch of land (whose length may shrink gradually depending on how late we leave the forecasting) where it is going to affect people with a high chance.  A forecast interval of sorts.

Read more

To John, enticements never can exert a pull. Probably the product of a disciplined upbringing. When John wants to buy something, he knows exactly what he’s looking for. He gets in and he gets out. No dilly-dallying, no pointless scrolling. Few of us are like John; the rest secretly aspire to be. Go on. Admit it! The science of enticing customers is sustained by this weakness.

Read more

Whatever your exact interests in data, frequently, inseparable from model-building, stand other related responsibilities. Sample two crucial ones:

a. the checking of how well your model did: the less frequently you make big, bad decisions – like predicting someone’s salary to be $95,000, an estimate far adrift from the real, say, $70,000 in case it’s a regression problem, or saying a customer will buy a product when, in fact, she won’t, under a classification environment – the happier you are. These accuracies are unsurprisingly, often used to guide the model-building process.

b. the explaining of how you arrived at a prediction: this involves unpacking or interpreting the $95,000. The person, due to his experience, makes $10,000 more than the average, due to his education, makes $20,000 more, but due to his state of residence, makes $5000 less than the average, etc. These ups and downs contribute to a net final value.

Read more

It was never meant to last, you know. Statistical measures have their heydays; permanent relevance is no guarantee. The p-value was – and still is – a tool like no other. Through the years it has been caressed and condemned, worshipped and feared, praised and slandered – all the while standing at the crossroads of almost every hypothesis testing, modeling, and prediction. Operationally, a p-value is convenient: we reject, almost mechanically, our null assumption if this value falls below certain discipline-specific thresholds like 0.01, 0.05, etc. Still, its cumbersome construction, triggering its tricky interpretation and stunning misuses, frequently lands it on the wrong side of both practitioners and stats purists. Bodies such as the American Statistical Association routinely issue caution around its use (https://doi.org/10.1080/00031305.2016.1154108). Experts have been hearing its death rattle for quite a while. The article “E-values: calibration, combination, and applications” by V. Volk and R. Wang could be the final twist of the knife. Here, the authors offer a promising alternative – the e-value – which can coexist with – and, at times, replace – its troubled ancestor.

Read more

4/4