Monthly Archives: October 2023

Title:   An Agent-Based Statistical Physics Model for Political Polarization: A Monte Carlo Study Authors & Year:   Hung T. Diep, Miron Kaufman, and Sanda Kaufman (2023) Journal: Entropy [DOI: https://doi.org/10.3390/e25070981] Review Prepared by Amal Machtalay Political polarization refers to a phenomenon where people’s political beliefs become radical, often resulting in the increasing division between political parties, which can have significant social consequences. This polarization is a complex system that is characterized by multiple factors: numerous interacting components (individual agents/voters, politicians, groups, media, etc.), non-linear dynamics (meaning that small changes can lead to large and uncertain effects), and emergent behavior (where collective phenomena result from local interactions, like when individuals engage with posts on social media that align with their political beliefs). The authors study the case of three USA political groups, each group indexed by $i\in  \left\{ 1,2,3\right\}$: Two types of interactions are classified and illustrated in Figure 1:…

Read more

By: Erin McGee  Paper title: Sequential Monte Carlo for Sampling Balanced and Compact Redistricting Plans Authors and year: Cory McCartan, Kosuke Imai, 2023  Journal: Annals of Applied Statistics (Forthcoming 2023),  https://doi.org/10.48550/arXiv.2008.06131 In 2011, the Pennsylvania General Assembly was accused of drawing a redistricting plan for the state that diluted the power of Democratic voters, while strengthening the Republican vote. The case made its way to the Pennsylvania Supreme Court, where it was determined to be an unfairly drawn map.  With more complicated techniques, gerrymandering, or altering districts to purposefully amplify the voting power of some, while reducing others, becomes harder to recognize. Gerrymandered districts are usually identifiable by the ‘jigsaw’ shapes that split counties and municipalities in an attempt to pack certain voting groups into the same district, while splitting others. However, proving that a district map has been purposefully manipulated, as it was in Pennsylvania, is no easy task.…

Read more

In order to validate our understanding of the world around us, we want to compare theoretical models to data we have actually observed. Often, these models are functions of parameters, and we want to know the values of those parameters such that the models most closely represent the world. For example, we may believe the concentration of one molecule in a chemical reaction should decrease exponentially with time. However, we also want to know the rate constant, the parameter in the model that multiplies time in the exponential, such that  the model exponential curve actually resembles a specific reaction that we observe. This is the problem of parameter inference, for which we often turn to Bayesian methods, especially when working with complex models and/or many parameters..

Read more

3/3