# Tag Archives: statistics

## E-values in statistics: apt additions or instruments of generational revolt?

It was never meant to last, you know. Statistical measures have their heydays; permanent relevance is no guarantee. The p-value was – and still is – a tool like no other. Through the years it has been caressed and condemned, worshipped and feared, praised and slandered – all the while standing at the crossroads of almost every hypothesis testing, modeling, and prediction. Operationally, a p-value is convenient: we reject, almost mechanically, our null assumption if this value falls below certain discipline-specific thresholds like 0.01, 0.05, etc. Still, its cumbersome construction, triggering its tricky interpretation and stunning misuses, frequently lands it on the wrong side of both practitioners and stats purists. Bodies such as the American Statistical Association routinely issue caution around its use (https://doi.org/10.1080/00031305.2016.1154108). Experts have been hearing its death rattle for quite a while. The article “E-values: calibration, combination, and applications” by V. Volk and R. Wang could be the final twist of the knife. Here, the authors offer a promising alternative – the e-value – which can coexist with – and, at times, replace – its troubled ancestor.

## Making the Joint Statistical Meetings truly “joint” with a broader audience

I recently got back from the Joint Statistical Meetings in Washington, D.C. where I talked about making audiences concrete and motivating authentic arguments for statistics students (and spread the word about MathStatBites of course). This is a big conference where statisticians from all over the world get together to talk shop, and it was back in person after a few years of going virtual.

## Navigating the “Black Hole of Statistics”: Model Selection

A statistical toolbox in some ways is like an endless buffet. There are tons of statistical methods out there, ranging from linear models to statistical tests to neural networks. In addition, with increasing amounts of data, new applications from other fields, and increased computational power, methods are constantly being created or improved upon. Having so many possibilities, of course, has its perks. But researchers inevitably must face this daunting question: what method do you choose and why?

23/23